
Software Engineering in User Interface Design with Guidelines

– from traditional applications to the Web sphere –

Hans-Jürgen Hoffmann

Darmstadt Univ. of Technology, Darmstadt, Germany

Chair on Programming Languages and Compilers

Alexanderstr. 10, D-64283 Darmstadt
HJHoffmann@ACM.org

Abstract. Software Engineering (SE) knows a set of techniques for improving and guaranteeing

quality of programs. In User Interface Design (UID) rules for achieving good usability results are

available in what is called Design Guidelines or Style Guides. In both fields supporting methods

and tools are in use. Combined methodology and tool support is a challenge for researchers,

implementors, and designers in both fields. Findings extend to the Web sphere.

The article gives a survey from the point of view of a computer scientist (in Germany) and reports

on successful and unsuccessful approaches to achieve the goal of combination.

1 Introduction

Construction of interactive application systems and design of user interfaces thereof are interdisciplinary work.

One person with qualified knowledge in both fields or a team of co-operating computer scientists/implementors

familiar with SE techniques and interface designers trained in UID are (to be) engaged in realization of system

requirements initially agreed upon between commissioning client organizations and software implementation

agencies. The paper argues that to aim for a combined methodology and tool support is an actual challenge for

SE/UID researchers, software implementors, and user interface designers.

2 Software Engineering

In software engineering (SE) for what is called Programming-in-the-large
1
 (DeRemer and Kron 1975) waterfall

and spiral process models (e.g., Royce 1970/1987, Boehm 1986/1988, Boehm et al. 1997,. 1998)
2
 guide the

program/software system construction process. Several document forms are in use. State-of-the-art is to apply

the Universal Modeling Language, UML (Rumbaugh et al. 1998), for specifications demanding the implementor

to search for a thorough understanding of objects relevant for the application and for functional relations

between them before starting to code in the programming language chosen. In object-oriented programming style

patterns (e.g., Gamma et al. 1995) and/or frameworks (e.g., Fayad et al. 1999a, 1999b) are concepts to achieve

re-use of previously implemented (and tested/validated) program parts. Test and maintenance plans are

additional documents to be prepared in advance and derived from the system requirements, based on formal

verification, walk-throughs etc. An overview of techniques/guidelines recommended for program/software

system construction (with contributions of the present author; Hoffmann 1993) can be found in (VDI-GIS 1993),

a follow-on book is (DGQ/ITG/VDI 1998); similar compendia of program/software system construction

guidelines exist, it´s not the place to give a detailed listing.

A very critical point of view about how and to what extent software engineers really follow the research

findings sketched above in program/software system construction has been taken by Parnas (1998). Considering

SE in relation to UID there are only a small number of serious investigations publicized (e.g., Draper and

Norman 1985, Taylor and Coutaz 1995, MSWE 1998).

There are more or less integrated tools available and in (limited) use, covering the construction phases

listed above, known under the umbrella term CASE-tools (Computer-Assisted-Software-Engineering), viz.,

focused to a specific programming language (Programming Environment), and/or focused to the engineering

1
 Programming in-the-small is not of interest in the SE context of the paper at hand. However, see

14
.

2
 There are more such models proposed and in use, see (e.g.) Balzert (1998).

approach chosen (Systems Environment), resp. In any case, the goal is to achieve and to guarantee a high quality

of the software product finally delivered to the client organization. Programming guidelines covering the know-

how of high-quality program/software system construction (should) have been followed when implementing the

tools mentioned above. In so far, no specific consideration has to be given to interactivity in an application

although the formalized techniques usually allow and demand interaction specification (from a point of view

considering the technical interface between program/system kernel and user interface software component
3
).

3 User Interface Design

This field, UID, adresses an interactive software product from a distinct point of view: Not the functionality (and

quality achieved) of the application kernel is of importance; paramount emphasis is given to how a user of the

product can reliably work with the software product to gain desired application results
4
; usability aspects are the

criteria guiding the design process
5
. Requirement analysis identifies user tasks to be achieved and relations

between them, e.g., relations for sequencing, what is called task analysis. Starting point is to know the user

population and their specific requirements
6
.

To-day we find interactive software products in closed environments, to name three:

(i) for business applications, e.g, document processing in text editors, simulation/planning in spreadsheets etc.;

(ii) for information retrieval in, e.g., management information systems, library access and the like; and

(iii) for engineering applications, e.g., system control, laboratory automation, CAD-applications, etc.

And there are open, distributed environments exemplified in the World Wide Web supporting not only simple

user applications but also co-operative situations with open user populations.

May we expect to find, to experimentally validate, and to be able to formulate guidelines in a

consolidated way accepted by both, implementors of programs/software systems and designers of user interfaces,

covering this wide scope of scenarios, including the Web sphere? May we build useful, robust and reliable

construction and design tools to improve the situation?

For the following discussion
7
 I want to point out an observation: You may find three categories of User

Interface Design Guidelines characterized below in sections 3.1 to 3.3.

Similar quality goals as those described above related to Software Engineering stand behind all these

forms of User Interface Design Guidelines, many of them covered by terms „ease of ...“ (you name it). Are they

easier and better applicable in tool design? What was/still is the impact of a tutorial of CHI´95 (Perlman 1995b)

directed towards software engineers?

It should be mentioned that, in a growing scale, there are authoritative agencies (like TÜV in Germany,

e.g. „Software-Ergonomie geprüft“, a label of TÜV Rheinland, see Rudlof and Dzida 1997) providing public

services for checking interactive application systems applying guidelines (in most cases based upon national or

international standards like ISO, DIN, etc.).

It is not the place here to discuss techniques widely introduced and in (successful) use in UID to

improve and guarantee usability. The topic of the paper is to discuss possible combinations in a SE methodology

and tool. Constructors and designers should both be supported in their work by a combined tool integrating

quality requirements of both fields (section 4).

3
 In English the term user interface is commonly used for the system component and the system appearance

seen and manipulated by the user, e.g., by a WIMP (window, icon, menue, pointing) realization. In German a

distinction is made (e.g., by contributors to Schneider 1997) between Benutzungsschnittstelle, the system

component, and Benutzungsoberfläche, the system appearance.
4
 Not considered here is the recently advocated argument an interactive system (Web included) should be fun.

5
 The reader should observe my (restricted) use of the word design (of the user interface realising a certain

system appearance) in contrast to the use of the word construction (of the software realising the application

kernel and the supporting user interface system component).
6
 The earliest user interface design guidelines I am aware of (Hansen 1971) already puts the rule of thumb

Know-the-user at the first position; others (e.g., Shneiderman 1997) follow this sequence of emphasis.
7
 You may find a compendium (status of 1995) of references to guidelines covered in the discussion in

(Perlman 1995a).

3.1 General User Interface design Guidelines

They express generally accepted rules of thumb which can not be objected. One example already given is Know-

the-user, Hansen´s paper (1971) lists in four categories of User Engineering Principles 13 more; other

„buzzwords“
8
 of user interface design are „user-centred design“, „participatory design“, modeless user

interfaces etc. Standardization
9
, e.g., the ISO standards (1992) or, in Germany, the DIN-Norm (1988), contribute

in this category of guidelines.

I will attribute a high-level granularity to this form of guidelines, a too high level of granularity. Is there

a chance to detail and to consolidate them so far as program/software system constructors and user interface

designers whole-heartedly follow them and tools enforce them?

3.2 Detailed User Interface Design Guidelines

This is a (too) fine grained approach of „Design Guidelines“ without appropriate metrics for computerized

knowledge representation, covering all aspects of user interface techniques in present and forthcoming technical

spheres. Well-known examples are compendia as those of Smith and Mosier (1986), 944 guidelines listed in

about 400 pages, of Vanderdonckt (1994), over 1200 and more actual guidelines, both with a strong research

basis. It has to be mentioned that many of these guidelines are heavily backed by research findings in psychology

and cognitive sciences. This criteria differentiates them from „Company Style Guides“ published (e.g.) by IBM,

SUN, MicroSoft, in a less formalized, prosa style and oriented towards specific company platforms.

An interesting tool in the scope of the Smith and Mosier guidelines (Mosier and Smith 1985) was

NaviText SAM (Perlman 1987), a hypertext-based guideline collection system to select applicable guidelines for

a design task
10

. In the late 80ties, in my opinion, it was too advanced for combination with a construction tool,

when a multi-window system platform was not available, one window for SAM and another window for

software coding. Vanderdonckt (1995) provided the SIERRA tool with a similar goal based on his compendium;

and in his paper (1999) he gives a systematization of milestones for achieving such goals.

3.3 Topical User Interface Design Guidelines

In between these two extreme cases you may find what I want to call Topical User Interface Design Guidelines

exemplified especially in the Web sphere by „gurus“: J. Nielsen´s Alertbox (1995a) covering at the time when

writing this article (May 2000) about 105 topics
11

 and his books on Multimedia and Hypertext (1995b), on

International User Interfaces (Nielsen and Galdo1996) as well as on Designing Web Usability (Nielsen 2000);

D. Norman (1986), B. Laurel (1990), B. Shneiderman (1997) to mention some more.

Topical User Interface Design Guidelines are also discussed on varying levels of competence and

originality in „Web journals/reviews/...“ easily accessible in the Web by surfing/searching the keyword phrase

„Web usability“. One finds here a medium-level granularity, picking interesting aspects of the just actual

technical sphere, not intented to achieve total covering of all circumstances. Here, statistics and „fashion of

application“/“fashion of technical realizability“ play an important role. It is only a small step to even less

serious „Topical Style Guides“ as discussed, e.g., in the CHI-WEB (199x), a very active international E-mail

discussion chat forum,

4 Combination and some previous „ general and tiny attacks“ to
achieve it

Realization of a combined, integrated methodology and tool to support program/software system construction

and user interface design assessment is, as already said, an interdisciplinary work, a hard interdisciplinary work.

It is the purpose of this paper to push research in this direction. Not all approaches I am aware of have been

successful. So, allow me to use the term „attack“ in this context. I will consider the topic mainly from the

(personal) point of view of a software engineer involved in UID.

8
 By intention I re-use this word remembering its use in Software Engineering (Parnas 1974).

9
 Reed et al. (1999) discusses the present state in standardization.

10
 For similar tools also see (Perlman 1995a).

11
 As an example take (Nielsen 1995c).

4.1 Combination

UID with guidelines is not simply achieved by having an interdisciplinary team working together in one project.

Such a group may (and has very often in the past) agree(d) ad hoc to follow a set of rules for program/software

system construction and user interface design („style guides“ as mentioned above). They did it in many cases

with success, also re-used the agreement, may be locally modified in details, in another project (thanks a lot!).

What I mean by „combination“ is

(i) a successful attack and finding of a method to achieve an integrated set of guidelines for both fields,

integrated in the sense of mutual validity for guaranteeing the quality goals set in both fields and with solved

technical interdependence for both processes, program/software system construction and user interface design;

and

(ii) successful finding of a technique to realize a tool which supports both, the constructors and the designers, in

adhering to combined guidelines in both processes.

4.2 Achievements in „general attacks“

I am sorry to say that I personaly don´t see successful general attacks in a broad scope. One reason I see is

twofold:

(i) The present inadequateness and unavailability of guidelines in both fields prepared for combination. To give

some in my opinion outstanding technical deficiencies: missing metrics, missing adequate granularity level,

missing hyperlink functionality.

(ii) The uselessness in tool realization with combined guidelines (if they were available) due to mutual

misunderstandings between the fields involved, SE and UID.

A second reason is, to my opinion, even more serious: How to achieve combination not only with the

manifold populations of users addressed (second argument above), but in the unlimited applications spheres

requiring widely differing user tasks to be realized, and with diverging demands for construction/design efforts,

for technical platform resources supporting traditional applications as well as the Web sphere, for security

measures, also for paying attention to cultural differences.

Hence, stop here! Stop here?

4.3 „Tiny attacks“ in SE

No, there are some tiny attacks which may be considered to be successful. I beg your pardon for seeing them

(only) in the scope of applications coded in Smalltalk (Goldberg 1995) or realized in the object-oriented style of

Smalltalk coding (Skublics et al. 1996).

At the very beginning the so-called MVC paradigm of Smalltalk has to be mentioned. It contributes on a

very low level of granularity
12

 a mechanism for cooperation of an application kernel, the model, with a view and

a controller component. From a SE point of view it offers a secure mechanism to handle presentation (i.e., the

view) and interaction (the control) as well as their interrelations, interrelations also with the application kernel.

The Smalltalk platforms embed model, view, and control classes for re-use in object instantiations providing the

necessary registration and broadcasting messages in a quality-proven way. The paradigm is widely and

successfully applied in Smalltalk applications (and, by scholarly work of constructors, in Java applications, too)

avoiding problems in interrelation and synchronisation of user interactions.

To-day, MVC is considered to be an interface design pattern (e.g., Buschmann et al. 1996). In the

patterns community search for such patterns is going on (one contribution resulting from research under my

supervision is Wu 1999). There are already a lot of application frameworks in construction/use
13

 in many fields,

e.g., evolutionary programming, learning support, simulation and planning, electronic commerce in the Web

(Hoffmann 1999), banking, information systems, plant control, where such patterns are integrated guaranteeing a

required level of usability in re-use if once checked and validated. Accepted that in most cases the UID aspect is

based on platform design guides, not on serious interface design guidelines.

12

 It falls outside my previous categorisation in section 3; one may list it in the first, general category realizing

the rule of thumb to have appropriate linking between application and interaction, or one may list it in the third

category belonging to the very low granularity level (however without explicit ergonomic foundation).
13

 Even coded in Java if the experience in and techniques of Smalltalk implementations are followed, for an

overview see the STJA Proceedings (1995 1999).

4.4 ISO 9000

In SE ISO 9000 certification (ISO 1993) of a company involved in (interactive) software construction is a very

hot topic. Emphasis, however, is not given to UID (why not?). Software documentation in general and means to

guarantee software quality from the point of view of the specific application are well to the fore. In the contract

between a commissioner and the company doing the construction and design work, of course, adherance to a set

of UID guidelines (in most cases of the company style introduced above) would be wise; one may not expect

tool support to achieve the combination in an integrated manner.

4.5 Web sphere

Construction and design of Web sites
14

 is construction and design of interactive systems. There may be a shift in

importance of some aspects, e.g., not-knowing the (international) user population beforehand at all, the re-born

dependency on performance
15

, necessity of platform independence, searching instead of direct accessing, the

manifold navigation capabilities needed. Accepted, in many situations real interactivity in a page of a site is

pronounced by the interactivity of the browser window – hopefully professionally well constructed and designed,

who will question it! –, not of the page.

Are available tools for construction/design of (Web pages and) Web sites going beyond ad hoc

adherence to topical UID guidelines, the serious ones? They help and support constructors and designers to

master HTML coding, following the techniques of Graphic Interface Builders (GIBs), also in use for interactive

non-Web applications (very often only with programming-in-the-small capability). As a booming field, educated

constructors and designers in the Web sphere covering both SE and UID are rare. Research publications (e.g.,

Ratner et al. 1996) are thinly scattered. CHI-WEB is often beat by commercial orientation. And last but not least,

have all constructors/designers studied the relevant topical UID guidelines?

History of Web „presentation“ from the beginning to now, say 8 years later, in my opinion, doesn´t

show much quality improvement. Browser versions added features and capabilities, true, but did they add

provisions to enforce better quality? The evolution of the Web sphere is still technology-driven. What will Web

access by mobile phones contribute?

Combined methodology and tools are missing, not seen to be available soon. Web construction and

design has, in my opinion, just reached the first development milestone in Vanderdonckt´s (1999) quality race.

5 Some combined approaches/tools

In the work of the Special Interest Group on Tools for Working with Guidelines, since its first meeting in 1994,

some approaches to combine SE construction and UID design with quality assessment in one tool have been

discussed. I will not bring up the discussions again (except about one tool in which I was personally involved,

DIADES). A second work I was involved in, EPK-fix, not known to the UID community will be presented in

short below. However, four more developments outside my personal involvement must be mentioned in addition

where I see efforts with similar goals: EXPOSE (Gorny 1995), another German development and counseling tool

with some similarities (and differences) compared to DIADES; the JANUS system of Fischer et al (1991);

CritiGUI (Nitsche-Ruhland and Zimmermann 1995); and Sherlock (Grammenos et al 2000). There are certainly

more where I am not aware of.

5.1 DIADES

The DIADES project (Hoffmann 1984, 1987a, Hoffmann et al. 1987b, Hoffmann 1993, Dilli and

Hoffmann1995, Vogt 1995) aimed to research a powerful construction tool for interactive applications with

combined, integrated UID assessment and identification of design decisions considerd to be weak from the point

of view of sound, qualityassuring (detailed) UID guidelines, accepted by the human factors community as such.

Visually-supported do-it-by-example was planned to be the selection mechanism for decisions, related towards

construction and design (in the sense as I use these two terms), about entities finally combined to become the

intented user interface program. Features of advanced user interface techniques (e.g., a menu structure) were

planned to be modelled by a knowledge-based description technique following the semantic net approach in KL-

14

 Following the distinctive terminology of SE a Web page is considered to be construction/design-in-the-small

as part of construction/design-in-the-large of Web sites.
15

 To work with a 500 MHz computer doesn´t guarantee timely work if the network delay is in the range of

seconds or even minutes!

ONE (Brachman 1977). An entity description (Hoffmann 1988) combined four parts used in entity instantiation,

viz.,

- the roles of the entitiy in relation to other entities and its parts,

- the VISUALIZE_AS-component supporting visual construction by interacting with an example,

- the ASSESS_AS-component for contributing the score of the selected entity from the point of view of UID

guidelines (of the detailed level as introduced above) as an assessment metrics rule (all together to be finally

combined in a PROLOG evaluator), and

- the GENERATE_AS-component providing code for the interface construction process.

One reason for the nonsuccess of the DIADES project was (in the 1983 – 1995 time frame) the

incompatibility of state-of-the-art SE techniques in modelling all the features of advanced user interface

techniques on one side and the nonavailability of a covering, sound set of UID guidelines in adequate granularity

with a metric adequate for identification of weak decisions about entities and their interrelations.

5.2 EPK-fix

Electronic product catalogues, EPKs, are an important service device of electronic commerce applications on the

WWW. EPK-fix, a project (Lutze et al. 1996, Schneeberger et al. 1997) to support rapid (fix) production and

maintenance of public catalogues, realized an interactive approach with four components,

- RASSI for interviewing a businessman commissioning the catalogue to gather his cataloguing requirements,

data and files,

- SASSI, a specification editor
16

 to transform the informal interviewing results into an objectoriented

specification document (Hoffmann and Closhen 1997),

- GASSI, the (humansupported mechanical) construction component for producing the catalogue as a HTML

site, and

- TASSI for testing/validating its usability (Fritzsche et al. 1997, Fritzsche and Michel 2000)

Features to be mentioned in the context of the paper at hand are the feedback loop between TASSI and

RASSI/SASSI to discuss bottlenecks detected by the TASSI inspection
17

 with the commissioner and to

consistently adapt the specification documents to changes and, secondly, the strict, versioning identification of

all construction/design decisions by marking tags flowing around in the loop together with the textual and formal

objects describing the catalogue and its construction state.

6 Conclusions

SE and UID based upon combined guidelines and used to guide realization in a flexible, general construction and

design tool seems to be a challenge, unrealistic in general (DIADES), realized/realizable with success only in

limited scope and limited use (if any; EPK-fix, EXPOSE, JANUS, CritiGUI, Sherlock). Much more work has to

be done in this interdisciplinary field of research and realization. Carter (1999) comes to a similar result.

The booming Web sphere, in my opinion, is in the long range a danger to attain a high usability quality

(e.g., consistency, conformity, robustness, learnability and teachability) everywhere, for all user groups

addressed/reached in the Web. There are too much untrained constructors/designers involved looking only for

attractiveness in a questionable sense, in the best case following the very often weak/confusing/contradicting

topical UID guidelines.

Literature references

Balzert H (1998) Organisation – Prozeß-Modelle. In H. Balzert (1998) Lehrbuch der Software-Technik.

Spektrum Akademischer Verlag, II LE 4, pp 97 - 138

Boehm BW (1988) A spiral model of software development and enhancement. IEEE Computer, vol 21, no 5, pp

61 – 72 (re-print of a 1986 paper)

Boehm B et al. (1997) Developing multimedia applications with the WinWin Spiral Model. ACM Software

Engineering Notes,22/6: 21 - 39

Boehm B et al. (1998) Using the WinWin Spiral Model: A case study. IEEE Computer 31/7: 33 - 44

16

 The project contribution realized under my supervision, coded in Smalltalk.
17

 Not specifically controlled by UID guidelines – sorry –, but with some metrics on important technical details

relevant for usability, e.g., accessibility of files, density of text, look-and-feel of buttons and input fields.

Brachman RJ (1977) What´s in a concept, structural foundations for semantic networks. Intl. J. Man-Machine

Studies 9: 127 - 152

Buschmann F et al. (1996) Pattern-oriented software architecture, a system of patterns. John Wiley & Sons, pp

125 – 143

Carter J (1999) Incorporating standards and guidelines in an approach that balances usabiltiy concerns for

developers and end users. Interacting with Computers 12/2: 179 - 206

CHI-WEB (199x onwards, x unknown) Electronic discussion list. CHI-WEB@ACM.ORG

DeRemer F, Kron H (1975) Programming-in-the-large versus Programming-in-the-small.

ACM SIGPLAN Notices 10/6: 114 – 121

DGQ/ITG/VDI (1998) Zuverlässigkeit komplexer Systeme aus Hardware und Software. Beuth-Verlag, Berlin

Dilli I, Hoffmann HJ (1995) Diades-II, a multi-agent user interface design approach with an integrated

assessment component. ACM SIGCHI Bulletin 27/2: 33 - 34

DIN (1988) DIN 66234: Grundsätze ergonomischer Dialoggestaltung. Beuth-Verlag, Berlin

Draper S, Norman D (1985) Software engineering for user interfaces. IEEE Trans Software Engineering, SE-

11/3: 252 – 258

Fayad M et al. (1999a) Building application frameworks: Object-oriented foundations of framework design. John

Wiley & Sons

Fayad M et al. (1999b) Implementing application frameworks: Object-oriented frameworks at work. John Wiley

& Sons

Fischer G et al. (1991) CRITICS, an emerging approach to knowledge-based human-computer interaction. Intl.

J. Man-Machine Studies 35/5: 695 – 721

Fritzsche H et al. (1997) Test-Assistenz für formal spezifizierte elektronische Produktkataloge. In: Schneeberger

J (ed) Software-Engineering für Multimedia Systeme. Workshop GI´97, pp 19 - 32

Fritzsche H, Michel T. (2000) Formalization and proof of design guidelines within the scope of testing formally

specified electronic product catalogues. Interacting with Computers 12/3: 209 - 223

Gamma E et al. (1995) Design patterns, elements of reusable object-oriented software. Addison Wesley

Goldberg A (1995) Why Smalltalk?. Comm. ACM 38/10: 105 - 107

Gorny P (1995) EXPOSE, An HCI-counseling tool for user interface designers. ACM SIGCHI Bulletin 27/2: 35

– 37

Grammenos D et al (2000) Integrated support for working with guidelines: the Sherlock guideline management

system. Interacting with Computers 12/3: 281 - 311

Hansen W (1971) User engineering principles for interactive systems. Proc. Fall Joint Computer Conference, pp

523 - 532

Hoffmann HJ (1984) DIADES, ein Entwurfssystem für die Mensch-Maschine-Schnittstelle interaktionsfähiger

Systeme. Notizen zu Interaktiven Systemen, no 12, pp 59 – 69

Hoffmann HJ (1987a) DIADES: A design tool for interactive programs with provisions to assess design

decisions about the man-machine interface. In: Zunde P, Agrawal JC (eds.). Empirical Foundations of

Information and Software Science IV – Empirical Methods of Evaluation of Man-Machine Interfaces, Plenum

Press New York London, pp 163 - 175

Hoffmann HJ et al. (1987b) Entwurf und Güteeinschätzung von Menü-Netzen: Ablauf einer Entwurfssitzung mit

DIADES. Proc. GI-17. Jahrestagung Computerintegrierter Arbeitsplatz im Büro, IFB 156, Springer-Verlag

Berlin Heidelberg, pp 337 - 352

Hoffmann HJ (1988) A sample conceptualisation for DIADES: Menu systems. Techn. Report PU1R1/88,

Darmstadt University of Technology, Chair on Programming Languages and Compilers

Hoffmann HJ (1993) How to improve overall system quality by a sensible design of man-machine interaction -

views of a software engineer -. In: Kafka P, Wolf J (ed) Proc ESREL´93, Elsevier Amsterdam et al, pp 939 - 947

Hoffmann HJ, Closhen P (1997) Spezifikation elektronischer Produktkataloge mit Hilfe der SASSI-Komponente

von EPK-fix. In: Schneeberger J (ed) Software-Engineering für Multimedia-Systeme. Workshop GI´97, pp 5 - 6

Hoffmann HJ (1999) Multimedia features in the correspondents´ interface of MALL2000 systems. In Proc IEEE

Intl Conf Multimedia Computing and Systems, IEEE Computer Society, vol 2, pp 1065 – 1067

ISO (1992 onwards) ISO 9241-xx, Ergonomic requirements for office work with visual display terminals

ISO (1993 onwards) ISO 9000-x: Quality management and quality assurance standards

Laurel B (1990) Art of human-computer interface design. Addison-Wesley

Lutze R et al. (1996) EPK-fix, Methoden und Werkzeuge zur effizienten Erstellung elektronischer

Produktkataloge. Statusseminar Softwaretechnologie, BMBF, pp 299 - 318

Mosier JN, Smith SL (1985) Application of guidelines for designing user interface software. Proc Human

Factors Society, 29
th

 Annual Meeting, pp 946 - 949

MSWE 613, Univ. of Maryland, Usability Engineering Class (Fall 1998) Guide to usability for software

engineers (GUSE). http://otal.umd.edu/guse/...

Nielsen J (1995a onwards) Bi-weekly alertbox. http://www.useit.com/alertbox

Nielsen J (1995b) Multimedia and hypertext: The Internet and beyond. AP Professional

Nielsen J (1995c) Guidelines for multimedia on the Web. In (Nielsen 1995a), Dec. 1995

Nielsen J, Galdo EM (1996) International user interfaces. John Wiley & Sons

Nielsen J (2000 announced) Designing Web usability: The practice of simplicity.

Nitsche-Ruhland D, Zimmermann G (1995) CritiGUI – Knowledge-based support for the user interface design

process in Smalltalk. In: Blumenthal B, Gornostaev J (eds) Human-Computer Interaction. Springer Berlin

Heidelberg, pp 179 – 188

Norman DA (1986) User centered system design. Lawrence Erlbaum Assoc

Parnas DL (1974) On a „buzzword“: hierarchical structure. Information Processing 74, vol 2 Software, pp 336 -

339

Parnas DL (1998) Design and documentation of program structures. Lecture notes „randell.slides“, 20/9/1998

Perlman G (1987) An overview of SAM: A hypertext interface of Smith & Mosier´s guidelines for designing

user interface software. Washington Inst of Graduate Studies, WI-TR-87-09

Perlman G (1995a) User interface guidelines and standards. ACM interactions 2/1: 5 – 7

Perlman G (1995b) Teaching user interface development to software engineers. ACM CH´95 Conf Companion,

pp 375 - 376

Ratner J et al. (1996) Characterization and assessment of HTML style guides. ACM CHI 96 Electronic

proceedings, Interactive Posters,
http:/www.acm.org/sigchi/chi96/proceedings/intpost/ratner/rj_txt.htm

Reed P et al. (1999) User interface guidelines and standards: progress, issues, and prospects. Interacting with

Computers 12 72: 119 - 142

Royce WW (1987) Managing the development of large software systems. 9
th

 Intl. Conf. on Software

Engineering, pp 328 – 338 (re-print of a 1970 paper)

Rudlof C, Dzida W (1997) Die Rolle von Fehlern und Mängeln in der Qualitätssicherung von Software.

http://selab24.informatik.uni-bremen.de/sw-ergo-news/sw-ergo160.html

Rumbaugh J, et al. (1998) The Unified Modeling Language, Reference Manual / User Guide.ACM Press and

Addison-Wesley

Schneeberger J et al. (1997) EPK-fix: Software-Engineering und Werkzeuge für elektronische Produktkataloge.

In: Jarke M et al. (eds) Informatik´97, Informatik als Innovationsmotor, Springer-Verlag, pp 446 - 455

Schneider HJ (1997) Lexikon Informatik und Datenverarbeitung, Version 4.0.R. Oldenburg Verlag München

Wien, pp 102 & 103

Shneiderman B (1997) Designing the User Interface: Strategies for effective human-computer interaction.

Addison-Wesley, 3
rd

 edition

Skublics S et al. (1996) Smalltalk with style. Prentice-Hall Englewood Cliffs

Smith SL, Mosier JN (1986) Guidelines for designing user interface software. TheMITRE Corp., ESD-TR-86-

278

STJA (1995 1999) Smalltalk und Java in Industrie und Ausbildung. Förderkreis STJA e.V.

Taylor RN, Coutaz J (Eds., 1995) Software engineering and human-computer interaction. Springer, Berlin

Heidelberg

Vanderdonckt J (1994) Guide ergonomique des interfaces homme-machine. Presses Universitaires de Namur,

Namur

Vanderdonckt J (1995) SIERRA: An interactive system for ergonomic realization of applications. ACM SIGCHI

Bulletin 27/2: 50 - 51

Vanderdonckt J (1999) Development milestones towards a tool for working with guidelines. Interacting with

Computers 12/2: 81 - 118

VDI-GIS (1993) Software-Zuverlässigkeit: Grundlagen, konstruktive Maßnahmen, Nachweisverfahren. VDI

Verlag

Vogt G (1994) Über Struktur und Aufbau eines Entwurfssystems für Benutzungsschnittstellen. Doctoral

dissertation, Darmstadt University of Technology, Dept. of Computer Science

Wu Y (1999) Acquisition-Computation-Execution-Expression (ACEE): A software architecture pattern for

computer supported interactive automation and control systems. PLoP99

