T-Diagrams

as Visual Language to Illustrate WWW Technology

Patrick Closhen, Hans-Jürgen Hoffmann, Elke Siemon, Jan Weerts

Darmstadt University of Technology, Darmstadt, Germany

{closhen, hoffmann, siemon, weerts}@pu.informatik.tu-darmstadt.de

Abstract

T-diagrams show long tradition in systems programming. Originally introduced to illustrate the UNCOL approach they gained famous reputation in describing complicated processes for bootstrapping, porting, and self-compiling of compilers, interpreters, macro-processors etc. In modelling processes they may be considered to be Petri nets.

[image: image1.wmf]
The visual language of T-diagrams illustrates transformations from a source language A to a target language B realized in an implementation language I.

[image: image22.wmf]
We describe client-server communication pro-cesses in networked computer/communication en-vironments. Currently the most interesting example is the World Wide Web. Processes described by net languages (HTTP, HTML, XML, etc.) or in Java are covered in T-diagram notation. Files, Java applets etc. are the program units flowing via the network.

1. Introduction and short historical review

[image: image23.wmf][image: image24.wmf]
T-diagrams [1] show long tradition in systems pro-gramming. Originally introduced to illustrate the UNCOL approach [2] they gained famous reputation in describing complicated processes for bootstrapping, porting, and self-compiling of compilers, interpreters, macro-processors etc. (e.g., [3], [4], [5], [6]). In modelling processes they may be considered to be Petri nets (PNs) with a distinct inter-pretation emphasizing transformation capabilities for (program) units
, the tokens, from a source language A to a target language B realized in an implementation language I. Transformation takes place in PN-transitions (imple-mented in I); PN-places keep on hand and receive tokens, formulated in language A or B, resp. (see Figure 1).
Similar to PN-refinement / PN-morphisms T-diagram reduction allows to zoom in and to zoom out in complica-ted T-diagram architectures. An important distinction to traditional PNs is the situation occuring regularly in the processes considered where a program unit (token) is acti- vated to become a transformation process (PN-transition) itself [7] (see Figure 2).

In this paper we describe client-server processes typically arising in a networked computer / communication environment. Currently, the most interesting example is the World Wide Web (WWW). Here, markup and (net) languages (HTTP, HTML, XML, Java) are considered as the languages covered in T-diagram notation. Files, Java applets etc. are tokens flowing via the network.

[image: image25.wmf]Figure 3. WWW architecture, top-level

Figure 3 gives an overview of the WWW architecture and important communication processes. Details are discussed in the following refinements. Some notational peculiarities which we use are introduced in the appendix.

2. WWW-environment

We consider first a simple client-server situation with a communication facility in between (Figure 3, server/net-work/client). It may be operated in both directions, server-to-client and client-to-server. Both directions are reduced to one top-level T-diagram with two inputs and outputs, resp.; their functionalities – identity transformations – are decoupled
. For our consideration it is irrelevant how the functionalities are realized, whether in cascaded layers, stored and forwarded, in a fixed or switched network, and even under synchronous or asynchronous timing. The communication facility may be the Internet (WWW); a typical protocol used there may be the HTTP-protocol.

The network data (, (‘, (, (‘ are transient. In the scope of WWW we will denote them by HTTP-stream. Embedded in the stream are application data encoded in manifold forms: text (e.g., HTML, XML), video (e.g., MPEG), audio (e.g., WAV); pictorial (e.g., JPEG, GIF), executable code (e.g., Java WWW-code). Please note that our discussion of what happens in a WWW-environment is functionally on a rather abstract level. Especially server addressing is done by the communication facility; it is outside of our considerations. In the sequel we will not zoom any more into details of the communication facility.

Application data (and (‘, resp., typically, are transient, too. On the server side we find database inquiry requests and database search results. On the client side there are graphics files, interaction specification scripts, event lists etc. On both sides there are transformation processes operating upon the data. We will continue to consider examples in the scope of WWW excluding Java provisions at the moment.

2.1 Server side of WWW

Essentially, we may split application data communica-ted to the server and delivered by the Delivery-program (see Fig. 4a, a typical server architecture) into two cate-gories:

· Common Gateway Interface (CGI) parameter-streams [image: image34.wmf]
, representing (e.g.) requests for database inquiries and controlling database access.

[image: image26.wmf][image: image27.wmf]Figure 4a. Detailed WWW architecture, server side

Figure 4b. Detailed WWW architecture, client side

· Stream [image: image2.wmf] of control events.

Control events control the application data flow into the Shipping room program; there are (e.g.) database search results [image: image3.wmf] (dynamic, transient application data) and/or statically prepared data (static application data) known as URL-addressed pages. Due to its importance, as an example, we identify application data to be communicated to the client in HTML (or XML) notation.

In the figure we used the DBMS-program as a typical application kernel [image: image4.wmf]. There are manifold alternatives to be substituted for the DBMS-program. In fact, the alternatives may be operating simultaneously triggered by com-municated requests split to control them separately.

Understanding the process of generating application kernels is of importance. A generated application kernel is, e.g., a C-program expecting parameters in CGI-format. It is able to interpret parameters for its control according to a description received. This approach is not restricted to C-programs; to give further examples, a kernel may be Unix shell commands, a Perl- or Tcl-script, SQL statements together with the proper interpreter.

Also, the target language of an application kernel does not have to be HTML / XML; the already mentioned forms of encoding (and others) may be produced.

Generation of an application kernel occurs at a different time; the result of generation is imported into the server in a configuration step. In figure 4a on the left we indicate only one approach for generation of (static) WWW pages in HTML-format (as an example). In chapter 3.2 we will refer to another approach for formulation of Java program text, too. Note that the tools used may run on an arbitrary platform (i.e., not necessarily on the server platform).

We will extend the server side architecture in chapter 3 to cover Java application.

2.2 Client side of WWW

The client receives via its Delivery a HTTP-stream which may consist of application data in manifold forms (united under AD; shown in Figure 4b is a typical client architecture). The stream is split into input sections for the different Reworkers. It is their task to transform the section they are responsible for from the standardized AD-format into a platform dependent graphics format (we call it DF, Display format notation). The Reworkers being part of a client software (such as the Netscape browser) are set up upon a Coordinator layer which then is running upon the platform machine. As an example the Coordinator assigns real estate of the display screen area to text blocks (received in HTML format), to video and/or pictorial win-dows (received in MPEG/GIF-form).

The client software has to cooperate with the user interface presentation and manipulation system (UIMS, user interface management system). Typical UIMSs we find on the client side are X-Windows and MS Windows. Following the categorization by Myers [8] they are based upon a graphics package and a windowing system with a user interface (including what Myers calls the window system) hooked upon it. For our purposes characteristics and design variations of available UIMSs being used on different platforms are not of much interest.

The Reworkers prepare under control of the Coordina-tor a graphics file in DF-notation presented to the user at the interface. It is transient data flowing into the interface. The Interface-program, from our viewpoint a transformation modelled by a T-diagram, delivers transient event data as output derived from user’s manipulations on the presented interface data. The transformation process is arbitrary, actually and permanently controlled by the user. Again have a look to the relevant details right in Figure 4b.

The event-stream (the format of which, again, is plat-form-dependent; we call it UM, User manipulation format, another form of application data AD´) is transformed in the Shipping room of the client into an HTTP-stream to be communicated through the network to the server
. Typically the events are transformed into CGI-parameter sets and control event sets, the application data which we postulated to occur as output from the server’s Delivery. Note, that now the flow of application data between server and client as well as client and server is closed
.

Again, we will extend the client side architecture in the following chapter to cover Java application.

3. T-Diagram representation of WWW-environment for Java applications

Here, it is more feasible to start the discussion with the client side. Figures 5a and 5b, resp., show the situation modified to include Java processing.

3.1 Client side for Java applications

What Java provides, in principle, are processing and presentation capabilities on the client side, going beyond what we already have discussed before. Of course there are also provisions on the server side; however they are not much different from what we presented for other editing facilities already discussed before.

[image: image5.wmf]Figure 5a. Detailed WWW architecture, including Java processing, server side

A Java Reworker [image: image6.wmf] (Figure 5b) is more than a simple transformation mechanism. A Java applet delivered to the client side becomes an individual transformation program by interpreting, when activated, the applet’s byte-code in the so-called Java Virtual Machine (JVM). Input to the Java transformation program are data delivered [image: image7.wmf]
 and are data resulting as events from user action on the interface [image: image8.wmf]; input is controlled by the applet itself [image: image9.wmf]. The applet can produce presentation data in DF-format (as all the other reworkers do); in addition it may produce application data AD´ to be shipped to the server side [image: image10.wmf], and it produces the control data [image: image11.wmf] already mentioned
.

It is obvious from Figure 4b that Java capability of a browser (like Netscape) at the client side is realized by activating the byte-code of a Java applet delivered. In addi-tion there are paths for data transfer as described above going beyond the client’s capabilities if only providing reworkers of the kind described for HTML, GIF, ... etc.

One should notice the Java runtime class library [image: image12.wmf], an essential resource for the JVM. Classes
 required during processing may be requested (by a transmission as AD´) from the server side or may be requested from [image: image13.wmf] [image: image14.wmf] , resp.

3.2 Server Side for Java applications

To realize Java processing as described for the client side we have to add generation capabilities for Java classes and/ or applets to flow, when requested, to the Shipping room. Figure 5a indicates the required extensions, viz., a Java compiler [image: image15.wmf] and a Java translation time class library [image: image16.wmf]. The target language of the compiler is Java byte-code. All byte-code is stored in what we call the Java applet data base [image: image17.wmf]. A request to ship a class or an applet, as static ap-plication data coming from the client side, is honoured by data base access and server response.

For simplicity we do not introduce features as, e.g., Java Database Connectivity. Conceptually they (and a lot of similar extensions) fall under what we have described for database access under the principal WWW architecture; these are dynamic application data requested and shipped as before.

[image: image18.wmf]Figure 5b. Detailed WWW architecture, including Java processing, client side

4. T-diagrams as a visual language

T-diagrams are a visualisation method developed in the early sixties to illustrate complicated design and configura-tion processes, mainly in the context of compiler design. More general, one should consider T-diagrams as a power-ful visual language to (elaborate and) illustrate complicated workflow processes on what we called tokens in regulatory situations, in software configuration, in communication technology, in business applications (e.g., EC applications [9]) etc. One reason for the useful applicability in these fields is the possibility to activate a rule set, a configured object, a communicated message or a newly decided busi-ness workflow step, resp. The T-diagram language allows to describe any kind of token transformations (look again at Figure 1) from a language (class) A to a language (class) B realized by a “machinery” I (may be even a human) and, possibly, to activate a transformed token later on.

With the paper at hand we want to call back T-dia-grams, a Sleeping Beauty, to become alive again. Illustration of WWW technology seems to be a convincing example. We see an important application area in teaching [10].

PN-theory is a well developed field of computer science. Consideration of means for implementation of PN-transitions possible by additional modelling of the im-plementation language, its interpretation and/or execu-tion with T-diagrams, and especially activation of tokens, which represent program units, to become PN-transitions, is a challenge for theoretical study.

5. Extensions and future work in the context of WWW technology

Java booms. One should be aware of different proposals to provide the functionality of Java applets.

There are also extensions providing interfaces from a Java applet to other platform-dependent services. E.g., there is a Java Networking Package which allows to estab-lish additional connections to a server machine. It would be a challenge to model such interfaces with T-diagrams.

The extensions which we described for Java processing going beyond the basic WWW technology can be found under similar circumstances, e.g., for processing of other languages (Smalltalk, C++) via the WWW. To discuss specific topics is outside the scope of this paper.

A WWW-environment follows and extents client-server architectural principles. One outstanding characteristics, already without Java capabilities, is its dynamic association of a server to a requesting client by using URL-addressing. As a (Java) applet is not necessarily used to continously support only user interfacing at a client side — it may perform self-contained computing tasks (remember data flow paths [image: image19.wmf] and [image: image20.wmf]) together with (safe) interfaces to other platform-dependent services as mentioned above — there is an open boundary to traditional forms of open, dynamically distributed client-server computing. Our approach applying T-diagrams for modelling communication flow may give insight into behaviour of general client-server systems of the kind referenced.

6. Conclusion

Future advancements in net communication technology as now operated upon the WWW cannot be foreseen. Even more complicated architectures may be expected. All the approaches fall under the client-server paradigm of distributed processing. Modelling such systems with T-dia-grams, also to quote their theoretical basis in Petri nets, in our opinion allows their better and more fundamental understanding.

7. References

[1] J. Earley and H. Sturgis, “A formalism for translator inter-actions”, Comm. ACM 13 (October 1970) 10, pp. 607 - 617.

[2] H. Bratman, “An alternate form of the ´UNCOL diagram´“, Comm. ACM 4 (March 1961) 3, p. 142.

[3] W. McKeeman et al., A compiler generator, (book cover), Prentice-Hall, 1970.

[4] O. Lecarme and M.-C. Peyrolle-Thomas, “Self-compiling compilers, an appraisal of their implementation and portabi-lity”, Software-Practice & Experience 8 (1978) 2, pp. 149 - 170.

[5] O. Lecarme et al., “Computer-aided production of language implementation systems, a review and classification”, Soft-ware-Practice & Experience 12 (1982) 9, pp. 785 - 824.

[6] N. Wirth, “Designing a system from scratch”, Structured Programming 1 (1989) 1, pp. 10 - 18.

[7] H. Brüning and T. Milbredt, “Architecture description by ´Black Forest´ diagrams”; Techn. Report PU1R11/88, Techn. Hochschule Darmstadt, FG Programmiersprachen und Übersetzer, 1988.

[8] B. Myers, “User interface software tools”, ACM Trans. Computer-Human Interaction 2 (March 1995) 1, pp. 64 - 103.

[9] D. Handl and H.-J. Hoffmann “HotFlow – a visual language for workflow applications in E-commerce”, submitted to VL´99.

[10] P. Closhen, H.-J. Hoffmann, E. Siemon, and J. Weerts, “Verstehen der Java-Technologie, T-Diagramme können helfen”, Proc. 3. Fachkongreß Smalltalk und Java in Industrie und Ausbildung, STJA´97, Erfurt, ISBN-3-00-001828-X, 1997, pp. 102 –107.

Appendix

[image: image28.wmf]transforming data in source language A into target language B; transforming pro-gram/process coded in implementation language I. (If the language/machine spe-cification is missing it is irrelevant or ap-plication dependent).

[image: image29.wmf] data (in language L, database, transient data respectively.

[image: image30.wmf]
splitting / joining of transient data (on demand according to notation into sec-tions (’, (’’, ...

[image: image31.wmf]
feeding of data (’, (’’, ... to form transient data under control of (.

[image: image32.wmf]
activating program (to perform trans-formation of data (into (’.

[image: image33.wmf]flow of data (may be omitted).

flow of data with connection [image: image21.wmf]

Interpreter for program implemented in language I1 running upon I2.

Figure � SEQ Figure * ARABISCH �1�. A simple T-diagram

Figure � SEQ Figure * ARABISCH �2�. Activation of a token in a T-diagram

� Traditionally only programs and their processing are considered in � T-diagrams. However, this is a special case.

� Internally there may be coupling of the directions, e.g., in case of (requests� for) retransmission of corrupted network data.

� WWW acitivities, in reality, start from a client’s side. We think in order � to explain the operation of a WWW-environment it is preferable to� begin the discussion with the server side.

� The circled letters are only marks for identification in the figures.

� UM becomes application data AD’ for client-server communication; we� distinguish it from application data AD for server-client communication� due to its different effects.

� Remember that we discuss on a functional level. In reality, the HTTP-� stream may be addressed to another server.

� The numbers identify connections for data flow (see appendix).

� One may argue that the JVM is responsible for the tasks described. We� think that, from a general understanding, the tasks are triggered by cor-� responding byte-codes and, for this reason, we show the data transfers� originating from and flowing into the T-diagram of the Java applet.

� Note that applets are classes.

