General Requirements for a Program Visualization Tool
to be Used in Engineering of 4GL-Programs

Ludwig Coulmann

Technical University at Darmstadt, Germany
Unit Programming Languages and Compilers

and

Software AG, Darmstadt, Germany

Abstract

Program visualization, the two-dimensional graphi-
cal representation of a traditional textual program can
be used profitably as an aid to help a programmer gain
an understanding of the program's meaning and func-
tion. In our context this process is called program
analysis. The paper first discusses characteristics of
program analysis. It points out that program analysis is
highly individual and is influenced by the person in-
volved and by the aim of the process. Secondly, the pa-
per describes what consequences evolve out of the char-
acteristics for a tool which supports program analysis.
Five distinct, general properties of a visualization tool
are presented, emphasizing the user and his changing
interests. Thirdly, concepts are given for the visualiza-
tion of 4GL-programs and a specific tool is described as
an example of how the outlined requirements translate to
a real application. A tree is used to represent different
structural relations in the program and icons at the
nodes facilitate the tree's perception. F. inally a discus-
sion of the presented concepts completes the article.

1. What Program Visualization is Used for

Often it is necessary for a software developer to re-
view an existing old program. Reading source code is
very laborious and time consuming because the devel-
oper has to follow someone else's thoughts and models.
This paper provides concepts for a visualization tool to
assist him in understanding the old program. A visuali-
zation tool can aid the process of becoming familiar with
an existing program by adding a graphical representation
to its textual formulation, clarifying its structure and the
correlation of its components. Visualization is done with
the main purpose of helping the user understand a pro-
gram better, faster, and more easily.

In the broadest sense the issue can be assigned to the
area of software reverse engineering; more precisely (i)
to restructuring, which is the transformation from one
representation of a program to another one on the same
level of abstraction and (ii) to redesigning, the derivation
of a higher level of abstraction from an existing repre-
sentation (Chikofsky, Cross, 1990). The concept of pro-
gram visualization as it is presented here supports the
reverse engineering process in the phases of information
~ollection, analysis, and representation of a program.

This support is automated so that a new representation of
the program can be generated without manual aid
through the programmer.

Here I describe the main requirements of a visualiza-
tion tool. This paper is an excerpt of Coulmann (1992)
which also gives a general introduction to program
visualization and available tools and which discusses
implementation considerations. Coulmann (1993) pre-
sents a detailed description of the visualization tool
"NATURAL Visualizer" (NV), which is a concrete ex-
ample for the concepts presented herein.

The concepts are generally valid for all textual pro-
gramming languages. An example of how their realiza-
tion might look follows (sect. 4). It is based on NATU-
RAL, a fourth generation data base access language
mainly used for business applications developed by the
German software company Software AG, Darmstadt.

According to the classification of program visualiza-
tion by Myers (1990) the presented concepts are a static
visualization of program code.

2. Characteristics of Program Analysis

To show the issue of discussion we give an example
(figure 1) which will be explained below in further de-

tail.
‘E] other statements

D other statements
"l:l other statements

Figure 1. Example of Visualization (Output Aspect)

With the term program 1 refer to all source code be-
longing to an application system. Normally it consists of
many distinct modules and might extend to several hun-
dred pages of program listing. The programmer's task of

working through a program to gain an understanding of
its functions is a process referred to as program analysis.
To find general requirements for a program visuali-
zation tool I first describe the main characteristics of
program analysis. As will be seen there is no generally
valid method according to which a program is analyzed.

2.1. Programs are Analyzed Under Different Aspects

While analyzing a program a programmer directs
very diverse questions to the program he is working on. I
call these different formulations of questions aspects.
The different aspects can be categorized as the global
aspect, functional aspects, and data aspects.

* The global aspect deals with the relationships
among the different components of the program.
Which components constitute the system? How do
they work together?

* The functional aspects relate to the functions a pro-
gram executes. Which functions exist? How are they
grouped to modules? What is the purpose of a single
function? The flow of control also has to be ques-
tioned here, i.e., in what sequence are functions exe-
cuted?

* The questions regarding data aspects include:
Which data structures exist? What is the purpose of
a single variable? Where, how, when, and why is a
variable used? What is the data flow like, i.e., how is
the data propagated among the variables?

Which aspect is relevant at a certain time depends on

different factors. Some of the factors are the program-

mer, the program itself, the analysis purpose, and the
phase within the analysis process.

* The programmers differ, e.g., with respect to their
experiences, knowledge about the program, and
their working style.

* The programs themselves differ in the type of appli-
cation (technical or business), the quality of the
source code (well structured, many comments, self
explaining identifiers, or not), and in the available
documentation.

* The purpose of analysis might be debugging, en-
hancement, or reuse of the program.

* Factors also depend on the phase within the analysis
process: A programmer has different questions
whether he is at the very beginning of his review
and wants to gain a rough overview, or whether he
follows up on a detailed problem at a later stage.

All of the aspects listed do not occur in a pure form, they
mix with each other to build a concrete question. These
questions change constantly. Often the answer to one
question raises many new questions; or if a question
cannot be answered at the moment the programmer turns
to another one.

2.2. The Aspect Determines What is Relevant

When a programmer analyzes a program he is only
interested in the topic actually relevant for his present
thinking. There are elements in the program which help
him to answer his question and others which do not con-
tribute at all. The category an element falls in depends
on the aspect under which he is reviewing the program.
Considering the fact stated above that program analysis
is done under changing aspects, it follows that each ele-
ment can be relevant at a certain time and be irrelevant
during another analysis phase.

An example that demonstrates this fact is taken from
the NATURAL programming language. The same piece
of source code (see below) can be visualized in two
completely different ways.

0200 READ EMP-VIEW BY NAME

0210 AT TOP OF PAGE

0220 WRITE "EMPLOYEES BY NAME:"
0230 END-TOPPAGE

0240 PERFORM PRINT-EMPLOYEES

0250 AT END OF DATA

0260 COMPUTE AV = AVER(SAL)
0270 WRITE "AVERAGE SALARY:" AV
0280 END-ENDDATA

0290 END-READ

One aspect might be the output of the program, a spe-
cialization of a functional aspect. To figure out how the
report is generated, the programmer might be interested
in the statements event-driven executed! like
AT TOP OF PAGE and AT END OF DATA. A
visualization which represents this aspect is already
shown in figure 1.

Another aspect might be the program's component
structure. Therefore the programmer might want to see a
call graph that shows which component is called by
which component. This aspect could be visualized as in
figure 2.

‘D other statements

D other statements

Figure 2. Example of Visualization (Call Graph Aspect)

1 NATURAL-terminology "non-procedural" executed
)

2.3. Program Analysis Means Searching and Navigat-
ing

The process of program analysis is a permanent
search for certain locations and therefore also a perma-
nent navigation through the program. One asks ques-
tions like: What is happening with that variable? Where
is that function called? What is happening after that
function call? To find answers, the programmer has to
search for distinct locations in the program and has to
move around within the program. Often the formulation
of the questions is not absolutely precise. The program-
mer hopes to find the answers just by reading the pro-
gram. The locations which interest him might be widely
separated throughout the program, spread over modules.

The precise formulation of a search criterion is often
very difficult as only incomplete information is available.
One only knows approximately what to search for. For
example: the problem of formulating exactly the name of
a variable or of a group of variables. It is true that mod-
ern word processors or development environments pro-
vide comfortable search functions which allow some
kind of imprecision (wild characters, regular expres-
sions), but the formulation of the search criterion is al-
ways limited to a textual manner. A query "show all lo-
cations in the program where variables of data base file
X are used" cannot be expressed in that way. But a
programmer has many such questions which cannot be
formulated by the search result if he wants to understand
the program.

Another problem is related to the fact that the pro-
grammer has to consider many different modules at the
same time. Utilities like the UNIX grep command and
cross reference lists generated by the compiler try to
assist in this situation, but they do not look at the whole
program with all its different modules as one unit and
cannot represent it in a comprehensive way. To under-
stand the correlation existing across module borders, the
analysis must not be limited to single modules.

2.4. Complexity Must be Ruled

Programs are very large and their internal relations
very diverse and hard to follow. Thus, program analysis
is a difficult task. To understand a program with a hun-
dred pages of source code but only three different vari-
ables and no conditions, branches, or loops is a job more
for a busy beaver than for an egghead. A complicated
program with many variables and different structures is
easier to comprehend the shorter it is. However you will
not find short programs in daily life. You normally will
have long and complicated programs which are impos-
sible for just one person to study and understand in it's
entirety.

2.5. Program Analysis is an Individual Process

The process of program analysis depends on the per-
son doing it. Every programmer has his own individual

style formed by his own personality, experience, and
knowledge (see above).

3. Consequences for a Visualization Tool

The characteristics mentioned in the previous sec-
tions require a visualization tool to meet certain proper-
ties in supporting the process of program analysis. Lucas
(1991) has summarized these properties (translation by
the author, emphasis added):

Because of the high amount of relations contained in
programs, it is mandatory that the programmer can
request the information important to him according to
his interests. When doing this he must not be dis-
tracted by other information which is irrelevant at
that time.

For the visualization tool in mind the properties may be
detailed as follows:

3.1. Property: Selective

To help rule the complexity the visualization tool
must only represent a sector of the whole program, i.e., it
must be selective. If the visualization tool represented a
1:1-projection of the source code into another more sym-
bolic notation, the programmer would encounter the
same problems of complexity he has when directly in-
vestigating the source code. All information irrelevant
under a certain aspect must be omitted because it dis-
tracts and unnecessarily makes the program more com-
plicated.

The requested selection might be to show one kind of
information and not to show other kinds. This could be
provided by different views of the represented program.
The view corresponds to the aspect under which the
program is investigated and commonly emphasizes a
structural relation within the program. Possible views are
flow of control, data flow, call or data structure, or in-
put/output.

Another way to provide selection is to show only a
part of the same kind of information; for instance only
variables with certain common properties, such as those
used by an investigated function. In contrast, other vari-
ables are not visualized because they are of no interest in
the current formulation of the question.

3.2. Property: Versatile

On one hand the visualization must be restricted to
selected parts of the program and on the other hand I
have stated above that all program elements be of the
same importance. These facts contradict each other. As a
consequence the tool must be versatile. The versatility is
achieved by providing different views and representation
modes. The tool must be able to adjust to varying formu-
lations of questions and varying methods of investiga-
tion.

Such methods might be: to work very close with the
source code or with the graphical representation; to ap-

proach a program via variables and data structures or via
the functional flow of control; to read a program from
top to bottom to get a general view or first to separate it
in its components and to investigate each one after an-
other.

A tool supporting only one fixed format for viewing
the program is not versatile. To some extent it forces the
user to analyze the program in a certain way, because it
provides only this one representation and therefore only
one single aspect and method. Either the programmer
adjusts his style of working to the prerequisites of the
tool or it is of no use to him. In contrast, the currently
investigated question should determine the way of repre-
sentation and the user should be able to choose in what
representation he wants to see it. One single appropriate
representation which is always valid does not exist.

3.3. Property: Flexible

Because of the fact that program analysis is done un-
der different and quickly changing aspects and that dif-
ferent programmers have different analysis styles, the
tool must be flexible. As far as possible all settings and
prerequisites of the tool should be easy to change. The
flexibility must not cause the user to be left alone with all
possible settings. Then the problem would be to find the
most appropriate settings and views rather than to under-
stand the program. Therefore, there should be default
settings for the viewing modes from which the user can
choose. Then he could employ the tool without a big
effort to learn how to use it and he would not have to
first develop concepts for his approach. However, default
settings must only be suggestions for the user and must
not limit his freedom, especially if he has used the tool
before and already has some experience.

Flexibility also means not to limit the user to only
one representation at a time. He should have the possibil-
ity of viewing several visualizations at the same time.
For instance, he could then compare two different views
or have a rough visualization next to a detailed one.

3.4. Property: Interactive

The fact that program analysis is done following
changing formulations of questions leads to the require-
ment that the tool must be interactive. Analysis is a con-
stant alternation between reading the visualization and
changing the settings of the tool and scrolling through
the representation. Like a programmer with only the
source code available is always turning the pages to find
the locations of interest to him, a user of a visualization
tool uses it to navigate through the program. In addition,
there is the possibility to adjust the mode of representa-
tion to the current formulation of question by changing
the settings. So he only sees what is necessary for him. A

static representation (e.g. Pretty Printing (Baecker, Mar-
cus, 1990), Pascal/HSD (Diaz-Herrera, Flude, 1980),
Greenprint (Belady, Evangelisti, Power, 1980), Delta
(Thurner, 1990)) is not able to accomplish that. Never-
theless, it might be useful to make a hard copy of a rep-
resentation in order to overcome the limitations of the
small size of a computer screen.

An interactive tool requires fast response times or it
will not be accepted by the user. Fast is a relative term
and the performance depends on many factors. The
amount of CPU time needed to produce a graphical rep-
resentation from the source code must not be underesti-
mated.

To quantify the time requirement I consider a re-
sponse time of one second per source code page proc-
essed as sufficient.

3.5. Property: User Oriented

The tool stands or falls by its user interface. This
seems to be a trivial statement because it is true for every
application. Every application should be fast and easy to
use and provide a lot of comfortable functionality at the
same time. But when I consider how many applications
exist which do not fulfill these basic requirements, I
think it is worthwhile mentioning them anyway. In the
area of software engineering, there are interesting ideas
and methods to support the software development proc-
ess (structure editors, programming using flow charts or
block charts, visual programming, see Myers, 1990). The
fact that no approach has been generally accepted yet is
also caused by not considering enough a user's needs. A
visualization tool faces the same risk.

The property "user oriented" means, for each
function, a devaloper has to evaluate its usefulness for
the user while designing a visualization tool. Which
functions a tool offers must be directed by the users'
requirements.

The consequence is that the user must be able to rule
the required flexibility. Too many commands and set-
tings expect too much of the user. If it takes a program-
mer six weeks to become familiar with a tool before he
can employ it effectively, he will probably never employ
it at all. A tool is good, if it is beneficial from the first
moment on. The user can then learn the more compli-
cated and powerful functions incidentally by using them.

For a tool to be accepted by the user, consistency is
important. Not everything which is possible and nice, fits
within the global concept. An additional improvement in
functionality — when taken by it's self useful and logical
— should only be added if it is consistent with the whole
system. Otherwise there is the risk of causing more
problems than help.

4. A Program Representation Through an
Iconized Tree

As a concrete example of how the requirements men-
tioned above translate to a real representation, I describe
a visualization of NATURAL programs? and the basic
concepts of the visualization tool "NATURAL Visual-
izer" (NV). The following sections are only a rough out-
line. A detailed description can be found in Coulmann
(1993).

4.1. The Tree

A program is represented through a tree. The outline
of a tree structure was chosen because it provides a good
general view and it is easy to comprehend. Furthermore
trees can be created by fast algorithms. The following
elements constitute the nodes of the tree: objects3, state-
ments, variables, and comments. The edges indicate the
elements' hierarchy. For objects this constitutes the call-
ing graph, for statements the nesting (separately for pro-
cedural and event driven statements), and for variables
the data structure. In addition, the tree shows which ele-
ments use or depend on each other. The statements
(represented by statement nodes) form the branches of
the tree. Other objects appear as operands of statements.
The object's statements constitute a subtree of its object
node. This leads to a branching from the root to the
leaves containing all statements and dependent objects of
the root object. The source code represented by a node is
visualized additionally by means of a detail box attached
to the right side of the node. This provides a link be-
tween the visualization and the original source code. El-
lipsis nodes indicate program parts not represented in the
tree. These nodes appear wherever a code section is
omitted in the visualization. They make the programmer
aware of the fact that the representation is not complete.
It also provides the opportunity to focus on a certain
aspect of analysis and to hide program elements irrele-
vant to the current aspect.

The visualization example (see Figure 3) represents a
fictitious program. It is supposed to provide an impres-
sion of how a NATURAL program might look, when it
is visualized.

4.2. The Icons

Icons are the key visualization concept in NV. They
provide the possibility of expressing a lot of symbolism
in a little space through a small image. Therefore, all
elements appearing in the visualization are provided
with an icon which represents the element's type. The
user recognizes "at first glance" what kind of element it
is. Without icons this information would have to be
given through text; but cognitive reception of textual

2A complete description of NATURAL is contained in the NATURAL
reference manual (see References).

3Objcct is the NATURAL term for module.

information is more strenuous for the viewer than the
perception of visual information. An alternative would
have been to choose other symbols such as geometric
shapes (rectangle, circle, and others, with differently
shaped borders) to denote an element's type. But shapes
are not nearly as expressive as icons and their meaning
is harder for a user to memorize, because he does not
associate anything with the symbols. Tanimoto (1987)
contributed concepts and ideas on how to design icons.
Figure 4 shows some examples of the icons used.

g Main Program %I Subprogram
X.| | Local Variables Map
Non-

yex+a| Data l%, procedural

Manipulation Execution
Control Flow ﬁ:jg Call Structure
;pﬁ Variable Ellipsis
| view *7"| Comment

Figure 4. Icon Examples

4.3. The Actions

The visual representation of a program presented
here displays its full effect on supporting a programmer
only in connection with the actions which manipulate the
representation. By working individually and interactively
with the visualization, the programmer overcomes the
limits of a static representation like a program listing. He
obtains the possibility to change attributes, to design and
apply filters, to expand and collapse branches of the tree,
to include other objects, and to view detailed information
on variables.

4.3.1.

For the user to be able to adjust the visualization of
the program to his needs there are attributes influencing
the appearance of the representation. He sets attributes
interactively while analyzing the program. The attribute
settings are not static at all, but change constantly as the
user adjusts the representation to his changing formula-
tions of questions. The attributes influence what and how
it is displayed. Diagram attributes determine which ele-
ments of the diagram are displayed, for instance: icons,
detail boxes, operand trees, labels, the extent of the
comments shown. In addition they decide on which ob-
jects and under which circumstances they are included in

Changing Attributes

0090 define data
6200 end-define

{0300 local l

][0310 01 EMP-VIEW view of EMPLOYEES

‘| 0330 02 FULL-NAME]

FIRST-NAME --------- L0340 03 FIRST-NAME (a20)
NAME ---------—-----[0360 03 NAME (aztﬂ
perform]l 0370 perform INITIALIZATIONS]
lNlTIAUZATIONs\ 'Linnne, defined it EXAMPI;I
-‘:l other source text
-{E‘ gomiment line~rrg--1——— 0860 * Let user input start value of read I

5 0870 input with text MSG-INFO.#4#MSG,
npt 0880

MSG-INFO.##MSG-DATA(1),
0890 MSG-INFO.##MSG-DATA(3)
e . 0900 using map 'NCLAYMN&'

. NCLAYMN1

.@ if [L 1' 1770 if MDDLEH = **
then
= -------------- { 1780 assign MIDDLE- = w—I

MIDDLE-|

READ-FILE. 1I 2110 READ. /* Escape this label if needeT|

| readL
EMPLOYEE-VIEW
e [l | 3220 at start of data

3570 end-startdata

3180 repeat unti PERSONNEL-ID >= '20000001'
repeat !

3260 end-repeat
{ 3190 write notitle (es=off) 'Starting at: * FULL-NAME

2120 read EMPLOYEE-VIEW by NAME
2130 starting from #START.#KY

Jl 2140 callnat 'XCUAIOO' FULL-NAME #IS-IN-DB—I

FULL-NAME

other variables

0070 display notitle 'EMPLOYEE' NAME /* Override header
0080 ‘Employees Car' MAKE [* more comments..
0090 ' MODELL e

{ 0400 end

Figure 3. Visualization Example

the visualization. Statement attributes determine which
statements or statement groups are displayed. Other at-
tributes influence the representation of variables, session
parameters, and system functions.

43.2.

NV provides filters to enable the programmer to con-
centrate on what he is currently interested in. If he se-
lects a filter, he does not see the whole program, but only
the aspects that can come through the filter. Filters are
implemented by setting the appropriate visualization at-
tributes. Each setting of the attributes constitutes a filter.
This means that specifying filters is simple and manipu-
lating them is easy.

4.3.3.

To keep an overview of a large tree and to easily
navigate through the tree, the user can expand and col-
lapse single branches or subtrees of the tree. For instance
by collapsing the whole branch of an object he is not
interested in, he obtains a compact representation of
what he is interested in. On the other hand, he can easily
display parts that are hidden behind a collapsed branch
by expanding it as soon as it becomes necessary for his
analysis. A collapsed branch is indicated by an ellipsis
node.

Applying Filters

Expanding and Collapsing Branches

43.4. Including Other Objects

To regard a program consisting of many objects as a
whole, NV can include all objects which depend on any
of the displayed ones into the visualization. To include
means to represent several different objects of a program
within one visualization at the same time. They are dis-
played as object nodes with their statements constituting
a subtree. A typical example is a main program calling
subprograms. The object nodes for the subprograms
appear as operands of the calling statements.

4.3.5.

To understand the meaning of a program it is impor-
tant to know which variables are used in what way.
Therefore a programmer wants to know where and how a
variable is defined when he encounters it somewhere in
the program. He can request this information easily for
every visible variable through a simple command no
matter where it is displayed. A pop-up window will be
displayed providing the background of the variable
(where it is defined, what type it is, or what structure it is
a part of, if it is a structure variable; also all comments
appearing at its definition are presented). A programmer
does not have to scan all modules to find this informa-
tion.

Information on Variables

5. Evaluation

In the following I describe how the required proper-
ties listed above are matched by the NATURAL visuali-
zation.

5.1. Selective => Filters/Ellipses

Filters give the possibility of selecting the kind of in-
formation the user is interested in; other information is
filtered out. This allows the user to concentrate on the
aspect relevant to his current formulation of question and
he does not have to deal with the whole program and the
full amount of complexity.

The mechanisms of collapsing and expanding
branches and of setting attributes are also a means of
selecting the desired information out of the whole. El-
lipsis nodes allow the user to hide what he is not inter-
ested in.

5.2. Versatile = Different Aspects

By filters and settings of the visualization attributes,
the programmer can create the appropriate views of the
program to reflect the different aspects he has during the
process of analysis. The tool is not limited to just one
representation of the program and just one method of
program analysis but can adjust to the versatile and
changing needs of the programmer.

5.3. Flexible => Attributes

The visualization attributes provide an easy way to
form the representation according to the user's require-
ments. Attributes can be set by just switching them on or
off in a dialog box. Sets of attribute settings can be saved
as a configuration file, so the user can create his own
pool of visualization views. Filters are implemented as
appropriate settings of attributes and therefore can be
manipulated in a handy way.

5.4. Interactive => a Workstation Tool with GUI

NATURAL Visualizer is designed as an interactive
tool which runs on a workstation with a graphical user
interface. This provides the ease of use and direct re-
sponse to the user's actions on the visualized program. If
fast response times are achieved, they guarantee a con-
venient utilization of the tool, and the user will always
obtain the desired representation of the program support-
ing his analysis efforts.

5.5. User Oriented => Individual Filters and At-
tributes

NV does not dictate any method or representation.
Everything can be designed by the user to fit his individ-
ual demands. Filters and attributes are the flexible
framework with which the user can build his personal
and individual solutions.

6. Conclusions

The visualization presented here offers the possibility
of both a detailed and a condensed representation. The
detail boxes with the source code provide all the details
necessary to comprehend a program in depth. By collaps-
ing branches of the tree the programmer condenses the

representation to the parts he is currently interested in.
Because the visualization is not limited to a single object
but displays all objects of a program with their correla-
tion, the programmer obtains a complete and compre-
hensive representation of the program. In addition, the
filters provide him with a means of only looking at cer-
tain aspects.

Because of these properties the user is supported
while searching and navigating through a program. A
comprehensive representation makes it easier for him to
get an overview at the beginning. At a later time he can
investigate specific detailed problems with a detailed
representation. By collapsing everything he is not inter-
ested in, he can concentrate on his specific question
without being distracted by other information. Therefore
it is easier for him to become familiar with the program
and he can more quickly develop an understanding of its
meaning,.

The flexible and interactive representation provides
the user with the security to control the whole process of
program analysis, because he can intervene quickly when
the representation is not appropriate. He does not feel he
is at the mercy of the tool and its representation of the
information. He can adjust the representation according
to his needs. The selection of information is more flex-
ible as with pure textual search and is closer to the vague
ideas a programmer has during program analysis. This
concept matches a tendency which also occurs in other
areas. Often an application tries to make visible and con-
trollable processes which perform automatically. With
that the user gets the security of being able to intervene
quickly when something unwanted happens. (Example:
While copying files all filenames are displayed and the
user has the possibility to abort the process before it is
finished.)

There are two extreme possibilities to represent a
program. In the area of visual programming some sys-
tems try to represent a program only through pictures
and symbols. Examples are PICT (Glinert, Tanimoto,
1984) and HI-VISUAL (Hirakawa et al., 1987). In con-
trast traditional programming environments provide ex-
clusively text oriented tools. The combination of a visual
and textual representation in the presented concept
combines these two extremes. It uses both the intuitive
approach to a program through pictures and symbols and
the precise and compact representation through text.
Representations which try to be more abstract than the
source code, can be created only with the aid of the user.
Furthermore, such representations contain the danger to
force the programmer to a view that might not be related
to his specific needs. Therefore, a very close relation
between the source code and its visual representation was
chosen. Every node in the visualization is directly
equivalent to a source code section.

I want to express my thanks to Software AG, specifi-
cally to Christian Lienert and Guido Falkenberg, for

their support of this work. Prof. Hans-Jiirgen Hoffmann
provided me with important ideas. This is appreciated.

7. References

Baecker, R., A. Marcus (1990): Human Factors and
Typography for More Readable Programs. Addi-
son Wesley, Reading, MA.

Belady, L.A., CJ. Evangelisti, L.R. Power (1980):
GREENPRINT: A graphic representation of struc-
tured programs. IBM Systems Jounal, 19, 4, 542-
333,

Chikofsky, E.J., J.H. Cross II (1990): Reverse Engineer-
ing and Design Recovery: A Taxonomy. IEEE Soft-
ware, January 1990, 13-17.

Coulmann, L. (1992): Visualisierung von NATURAL-
Programmen. Konzepte und Implementierung als
Prototyp. Diploma thesis, Unit Programming Lan-
guages and Compilers, Department of Computer
Science, Technical University of Darmstadt, Ger-
many.

Coulmann, L. (1993): Programmvisualisierung bei
Sprachen der 4. Generation. Paper submitted to a
conference.

Diaz-Herrera, J.L., R.C. Flude (1980): Pascal/HSD: A
Graphical Programming System. IEEE Proceedings
COMPSAC 1980. The Institute of Electrical and
Electronics Engineers, Inc., 723-728.

Glinert, E.P., S.L. Tanimoto (1984): Pict:An Interactive
Graphical Programming Environment". IEEE Com-
puter, 17, 7-25.

Hirakawa, M., S. Iwata, I. Yoshimoto, M. Tanaka, T.
Ichikawa (1987): HI-VISUAL Iconic Programming.
IEEE 1987 Workshop on Visual Languages,
Link6ping, Sweden, 305-314.

Lucas, J. (1991): Ein Visualisierungswerkzeug fiir die
Wartung modularer Programme. in J. Encarnagio
(Ed.): Telekommunikation und multimediale An-
wendungen der Informatik. Proceedings 215!
Annual Conference of the German Society on Com-
puter Science (GI) 1991. Springer Verlag, Berlin,
405-414.

Myers, B. A. (1990): Taxonomies of Visual Program-
ming and Program Visualization. Jounal of Visual
Languages and Computing, 1, 97-123.

NATURAL 2.2 Reference Manual (1991). Manual Or-
der Number: NAT-221-030. Software AG,
Darmstadt.

Tanimoto, S.L. (1987): Visual Representation in the
Game of Adumbration. IEEE 1987 Workshop on
Visual Languages, Linképing, Sweden, 17

Thurner, R. (1990): Reengineering mit Delta. in H. Bal-
zert (Ed.): CASE: Systeme und Werkzeuge.
BI-Wissenschaftsverlag, Mannheim, Vienna, Ziirich,
135-166.

Q

{

